Structure of Computer Science/Information Technology (IT) Syllabus II YEAR IV SEMESTER

Paper-IV : DATA STRUCTURES

Course Objectives

To introduce the fundamental concept of data structures and to emphasize the importance of data structures in developing and implementing efficient algorithms..

Course Outcomes

- 1. Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms
- 2. Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs.
- 3. Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs
- 4. Demonstrate different methods for traversing trees
- 5. Compare alternative implementations of data structures with respect to performance
- 6. Compare and contrast the benefits of dynamic and static data structures implementations
- 7. Describe the concept of recursion, give examples of its use, describe how it can be implemented using a stack .
- 8. Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.

UNIT I

Concept of Abstract Data Types (ADTs)- Data Types, Data Structures, Storage Structures, and File Structures, Primitive and Non-primitive Data Structures, Linear and Non-linear Data Structures.

Linear Lists – ADT, Array and Linked representations, Pointers.

Arrays – ADT, Mappings, Representations, Sparse Matrices, Sets – ADT, Operations

Linked Lists: Single Linked List, Double Linked List, Circular Linked List , applications

UNIT II

Stacks: Definition, ADT, Array and Linked representations, Implementations and Applications

Queues: Definition, ADT, Array and Linked representations, Circular Queues, Dequeues, Priority Queues, Implementations and Applications.

UNIT III

Trees: Binary Tree, Definition, Properties, ADT, Array and Linked representations, Implementations and Applications. Binary Search Trees (BST) – Definition, ADT, Operations and Implementations, BST Applications. Threaded Binary Trees, Heap trees.

Structure of Computer Science/Information Technology (IT) Syllabus

UNIT IV

Graphs – Graph and its Representation, Graph Traversals, Connected Components, Basic Searching Techniques, Minimal Spanning Trees

UNIT- V

Sorting and Searching: Selection, Insertion, Bubble, Merge, Quick, Heap sort, Sequential and Binary Searching.

REFERENCE BOOKS

- 1. D S Malik, Data Structures Using C++, Thomson, India Edition 2006.
- 2. Sahni S, Data Structures, Algorithms and Applications in C++, McGraw-Hill, 2002.
- 3. SamantaD, Classic Data Structures, Prentice-Hall of India, 2001.
- 4. Heilman G I, Data Structures and Algorithms with Object-Oriented Programming, Tata McGraw-1 lill. 2002. (Chapters I and 14).
- 5. Tremblay P, and Sorenson P G, Introduction to Data Structures with Applications, Tata McGraw-Hill,

Student activity:

- 1. Create a visible stack using C-graphics
- 2. Create a visible Queue using C-graphics

Structure of Computer Science/Information Technology (IT) Syllabus

DATA STRUCTURES USING JAVA LAB

- 1. Write a Program to implement the Linked List operations
- 2. Write a Program to implement the Stack operations using an array.
- 3. Write Programs to implement the Queue operations using an array.
- 4. Write Programs to implement the Stack operations using a singly linked list.
- 5. Write Programs to implement the Queue operations using a singly linked list.
- 6. Write a program for arithmetic expression evaluation
- 7. Write a program to implement Double Ended Queue using a doubly linked list.
- 8. Write a program to search an item in a given list using Linear Search and Binary Search
- 9. Write a program for Quick Sort
- 10. Write a program for Merge Sort
- 11. Write a program on Binary Search Tree operations(insertion, deletion and traversals)
- 12. Write a program for Graph traversals